Universal Methylated Mouse DNA Standard & Control Primers

The Beauty of Science is to Make Things Simple

Cat. Nos. D5012

Storage: -20 °C

Product Information

Product Contents:

	Cat. # D5012	Storage Temp.
Universal Methylated Mouse DNA Standard	5 μg/20 μl	-20 °C
mMLH1 Primers	20 µl	-20 °C

Description:

The Universal Methylated Mouse DNA Standard includes enzymatically methylated DNA together with a specially-designed primer set to be used in conjunction with Zymo Research Corporation's EZ DNA Methylation™, EZ DNA Methylation-Gold™, and EZ DNA Methylation-Direct™ kits to assess the efficiency of bisulfite-mediated conversion of DNA. The supplied DNA was isolated from male mouse strain Balb/c, and is enzymatically methylated at all cytosine positions comprising CG dinucleotides by M.Sssl methyltransferase¹ 2.1.1.37; Figure 1).

Figure 1. M.SssI methytransferase methylates all cytosine residues in the double-stranded CpG context.

The primer set is designed to amplify a fragment of the mouse MLH1 mismatch repair gene following bisulfite treatment. The methylated cytosines comprising CG dinucleotides remain unconverted following bisulfite treatment, whereas non-methylated cytosines are converted into uracil and detected as thymine after PCR.

References:

1. Nur et al. J. Bacteriol. 164: 19-24 (1985).

Protocol:

Note: We recommend using ZymoTaq™ DNA Polymerase or other hot-start DNA polymerases for amplification of bisulfite-treated DNA.

The following setup is designed for a 25 µl total reaction volume:

Component	Volume	Final Conc.
mMLH1 primer I*	Variable	0.2 to 0.8 µM
mMLH1 primer II*	Variable	0.2 to 0.8 µM
Bisulfite-converted DNA**	2 µl	up to 20 ng/µl
10 mM dNTP mix	0.5 µl	0.2 mM each dNTP
Standard PCR buffer	Variable	1x
MgCl ₂ or MgSO ₄	Variable	1-4 mM, if needed
Zymo <i>Taq</i> ™ DNA Polymerase		
(or other Hot-start DNA polymerase)	Variable	1 to 2 units
Add water to 25 µl		

^{*} Alternatively, you may substitute primers of your choice.

2. Recommended Thermocycler Conditions:

A. 95 °C, 10 minutes
B. 95 °C, 30 seconds
C. 58 °C, 30 to 60 seconds

D. 72 °C, 60 seconds

E. Repeat steps B through D an additional 29 to 39 times depending on the polymerase used.

F. 72°C, 7 minutes

G. 4 °C

The PCR amplicon can now be used directly for sequencing analysis or cloning.

Product Specifications:

Universal Methylated DNA Standard, 5 µg/20 µl.

Source: DNA isolated from male mouse strain Balb/c [enzymatically methylated by M.Sssl Methyltransferase (EC 2.1.1.37)].

Concentration: 250 ng/µl in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

Storage: -20 °C

II. Control Primers.

 $\underline{\text{Concentration:}}$ 20 μM each primer in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)

Volume: 20 µl of mixed primers

Storage: -20 °C Sequence:

mMLH1 Primer I:

5' - GGTGTACGAAGTTATTTTATTTTAGTC - 3'

mMLH1 Primer II:

5' - ACCCAACGATACCTAATAATAAAACC - 3'

Appendix:

The expected PCR amplicon for the Universal Methylated Mouse DNA Standard is 304 bp, corresponding to nucleotide positions 430 to 778 of mouse MLH1 DNA including the regions (italicized) that hybridize to the primers (GenBank Accession #: AF400617).

Original sequence of mouse MLH1 DNA for bisulfite treatment and PCR amplification (sense strand 5' to 3'). The cytosines (underlined) in the CpG dinucleotide context (bold capitol letters) are methylated enzymatically by M.SssI methyltransferase:

421	g	gtgta c Gaag	tcaccctcac	cccagc <u>C</u> GC
461	acccttcaag	gccaagaag ${f C}$	$\mathbf{G} \texttt{gcagaggc} \underline{\mathbf{C}}$	G aggcctgcc
501	CGCG t CG ctc	tctcctc $\underline{\mathbf{C}}\mathbf{G}$ g	agtgagca CG	g C Ggccaaag
541	acatgtcacc	ctgc CG caga	CG ct CG acca	gggc CGCGCG
581	ttcct CG tcc	cctacaaac <u>C</u>	$\mathbf{G}\mathtt{ct}\underline{\mathbf{C}}\mathbf{G}\mathtt{tagaa}$	tt CG tgct CG
621	gcct CG tagt	gg C GcctcaC	$\mathbf{G} \texttt{t} \underline{\mathbf{C}} \mathbf{G} \underline{\mathbf{C}} \mathbf{G} \texttt{t} \texttt{t} \texttt{c} \texttt{c}$	<u>C</u>G agtagagg
661	$\underline{\mathbf{C}}\mathbf{G}$ accagg $\underline{\mathbf{C}}\mathbf{G}$	g C Gacacacc	aggcacaggg	ccc CG tcacc
701	ctc CG ca <i>ggc</i>	tccaccacca	ggtat cg ctg	ggt

Continued on next page...

^{**} Remember to bisulfite-treat the DNA prior to performing PCR.

Appendix (continued...):

Expected sequence of the above DNA following bisulfite treatment. Methylated cytosines in the CpG dinucleotide context remain unconverted following bisulfite treatment, whereas non-methylated cytosines, or cytosines not in the CpG context, are converted to uracil and detected as thymine after PCR.

421	g	gtgta c Gaag	ttatttttat	tttagt cGC G
461	Attttttaag	gttaagaag C	$\mathbf{G} \texttt{gtagaggt} \underline{\mathbf{C}}$	G aggtttgtt
501	CGCGtCGttt	ttttttt CG g	agtgagta $\overline{\mathbf{C}}\overline{\mathbf{G}}$	g C Ggttaaag
541	atatgttatt	ttgt CG taga	CG tt CG atta	gggt CGCGCG
581	ttttt CG ttt	tttataaat C	G tt CG tagaa	tt CG tgtt CG
621	gttt CG tagt	gg C GttttaC	GtCGCGtttt	CG agtagagg
661	CG attagg CG	g CG atatatt	aggtataggg	ttt CG ttatt
701	ttt CG taggt	ttattatta	ggtat cg ttg	ggt

Also Available:

Product Name	Size	Catalog number
EZ DNA Methylation™ Kit	50 200 2 x 96 2 x 96	D5001 D5002 D5003 D5004
EZ DNA Methylation-Gold™ Kit	50 200 2 x 96 2 x 96	D5005 D5006 D5007 D5008
EZ DNA Methylation-Direct™ Kit	50 200 2 x 96 2 x 96	D5020 D5021 D5022 D5023
EZ DNA Methylation-Startup™ Kit	1 Kit	D5024
EZ Bisulfite DNA Clean-up Kit™	50 200 2 x 96 2 x 96	D5025 D5026 D5027 D5028
Universal Methylated DNA Standard	1 set	D5010
Universal Methylated Human DNA Standard	1 set	D5011
Human HCT116 DKO Methylation Standards	1 set	D5014
Human HCT116 DKO Non-methylated DNA Standard	5 μg	D5014-1
Human HCT116 DKO Methylated DNA Standard	5 µg	D5014-2
Bisulfite Converted Universal Methylated Human DNA Standard	1 set	D5015
E. coli Non-methylated Genomic DNA	5 µg	D5016
ChIP DNA Clean & Concentrator™	50 50	D5201 D5205
Methylated-DNA IP Kit	10	D5101
Anti-5-Methylcytosine Monoclonal Antibody (clone 10G4)	50 μg 200 μg	A3001-50 A3001-200
Zymo <i>Taq</i> ™ DNA Polymerase	50 200	E2001 E2002
Zymo <i>Taq</i> ™ PreMix (2X concentrated)	50 200	E2003 E2004
CpG Methylase (M.SssI)	200 units 400 units	E2010 E2011

Trademarks and Disclaimers:

™ Trademarks of Zymo Research Corporation.

This product is for research use only and should only be used by trained professionals. Wear protective gloves and eye protection. Follow the safety guidelines and rules enacted by your research institution or facility.

The Polymerase Chain Reaction (PCR) process is covered by U.S. Patent: #4,683,195; 4,683,202 assigned to Hoffmann-La Roche. Patents pending in other countries. No license under these patents to use the PCR process is conveyed expressly or by implication to the purchaser by the purchase of Zymo Research's products. Further information on purchasing licenses to practice the PCR process can be obtained from the director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404 or at Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501.

Version 2.1.6