Methylated & Non-methylated pUC19 DNA Set

Cat. Nos. D5017

Storage: -20 °C

Product Information

Product Contents:			
	Cat. # D5017	Storage Temp.	
Methylated pUC19 DNA	20 ng/20 μl	-20 °C	
Non-methylated pUC19 DNA	20 ng/20 μl	-20 °C	
pUC19MN Primers	20 µl	-20 °C	

Description:

The Methylated & Non-methylated pUC19 DNA Set consists of two control DNAs (methylated and non-methylated) along with a set of specifically designed primers that can be used in conjunction with the EZ DNA Methylation™, EZ DNA Methylation-Gold™, and EZ DNA Methylation-Direct™ kits from Zymo Research to assess the efficiency of bisulfite-mediated conversion of DNA. These plasmids can be used in conjunction with genomic DNAs to provide internal controls to assess bisulfite conversion efficiency or to produce known mixtures of methylated and non-methylated DNA for assay calibration.

The **Non-Methylated pUC19 DNA** is pUC19 that was isolated from a methylation-negative strain of bacteria (Dam^- , Dcm^-) and can be used as a negative control for DNA methylation analysis. The Methylated pUC19 DNA is pUC19 that has been isolated from the same strain and has been enzymatically methylated at all cytosine positions comprising CG dinucleotides by M.Sssl methyltransferase² (EC 2.1.1.37; Figure 1) and can be used as a positive control for DNA methylation analysis.

Figure 1. M.SssI methytransferase methylates all cytosine residues in the double-stranded CpG context.

The primer set herein has been designed to amplify a fragment of the supplied pUC19 DNAs following bisulfite treatment. The methylated cytosines, comprising CG dinucleotides in the Methylated pUC19 DNA remain unconverted following bisulfite treatment, whereas nonmethylated cytosines are converted into uracil and detected as thymine after PCR. The supplied pUC19 DNA has been linearized at position 2177 using Scal endonuclease.

References:

1. Nur et al. J. Bacteriol. 164: 19-24 (1985).

Protocol:

1. Bisulfite Conversion:

For most applications 5-50 pg of plasmid may be used as an internal control for reactions containing 250 ng to 2 µg of genomic DNA. Refer to the kit specifications for setup of the bisulfite conversion reaction.

2. PCR Setup:

Note: We recommend using ZymoTaq™ DNA polymerase or other hotstart DNA polymerases for amplification of bisulfite-treated DNA.

The following setup is designed for a 25 µl total reaction volume:

Component	Volume	Final Conc.
pUC19MN Primer I*	Variable	0.2 to 0.8 μM
pUC19MN Primer II*	Variable	0.2 to 0.8 µM
Bisulfite-converted DNA**	1 µl	up to 0.25 pg/µl
10 mM dNTP mix	0.5 µl	0.2 mM each dNTP
Standard PCR buffer	Variable	1x
MgCl ₂ or MgSO ₄	Variable	1-4 mM, if needed
Zymo <i>Taq</i> ™ DNA Polymerase		
(or other Hot-start DNA polymerase)	Variable	1 to 2 units
Add water to 25 µl		

- * Alternatively, you may substitute primers of your choice.
- ** Remember to bisulfite-treat the DNA prior to performing PCR.
- Recommended Thermocycler Conditions:

 - A. 95 °C, 10 minutes
 B. 95 °C, 30 seconds
 C. 57 °C, 30 to 60 seconds
 - D. 72 °C, 60 seconds
 - E. Repeat steps B through D an additional 29 to 39 times depending on the polymerase used.
 - F. 72 °C, 7 minutes
 - G. 4°C

The PCR amplicon can now be used directly for sequencing analysis or cloning.

Product Specifications:

I. Methylated pUC19 DNA, 20 µl.

Source: pUC19 plasmid purified from Dam-, Dcm- E. coli [enzymatically methylated by M.Sssl Methyltransferase (EC 2.1.1.37)].

Concentration: 1 ng/µl of Methylated pUC19 DNA in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

Storage: -20 °C

II. Non-methylated pUC19 DNA, 20 µl.

Source: pUC19 plasmid purified from Dam⁻, Dcm⁻ E. coli. Concentration: 1 ng/µl of Non-methylated pUC19 DNA in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

Storage: -20 °C

III. pUC19MN Primers.

Concentration: 20 µM each primer in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)

Volume: 20 µl of mixed primers

Storage: -20 °C Sequence:

pUC19MN Primer I:

5' - GGTTATAGTTGTTTTTTTGTGTGAAATTGTTATT - 3'

pUC19MN Primer II:

5' - CTAACCTTTTACTCACATATTCTTTCCTAC - 3'

Continued on reverse side...

Appendix:

The expected PCR amplicon for both the methylated and non-methylated DNA is 362 bp, corresponding to nucleotide positions 464 to 825 of the pUC19 sequence, including the regions (italicized) that hybridize to the primers.

Original sequence of pUC19 for bisulfite treatment and PCR amplification (sense strand 5' to 3'). The cytosines (underlined) in the CpG dinucleotide context (bold capitol letters) are methylated enzymatically by M.SssI methyltransferase:

461	GGTCATA	GCTGTTTCCT	GTGTGAAATT	GTTATC CG CT
501	CACAATTCCA	$\texttt{CACAACATA}\underline{\textbf{C}}$	$\mathbf{G} \texttt{AGC} \underline{\mathbf{C}} \mathbf{G} \texttt{GAAG}$	CATAAAGTGT
541	AAAGCCTGGG	GTGCCTAATG	AGTGAGCTAA	CTCACATTAA
581	TTG CG TTG C G	$\texttt{CTCACTGCC}\underline{\textbf{C}}$	$\mathbf{G}\mathtt{CTTTCCAGT}$	$\underline{\mathbf{C}}\mathbf{G}\mathbf{G}\mathbf{G}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{C}\mathbf{C}\mathbf{T}$
621	GT CG TGCCAG	CTGCATTAAT	$\mathtt{GAAT}\underline{\mathbf{C}}\mathbf{G}\mathtt{GCCA}$	ACGCGCGGGG
661	AGAGG CG GTT	$TG\underline{\mathbf{C}}GTATTGG$	GCCTCTTCC	G CTTCCT C GC
701	TCACTGACT C	$\overline{\mathbf{G}}\overline{\mathbf{C}}\overline{\mathbf{G}}\overline{\mathbf{C}}\overline{\mathbf{C}}\overline{\mathbf{C}}\overline{\mathbf{C}}$	GT CG TT CG GC	TGCGGCGAGC
741	G GTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA
781	GAATCAGGGG	$\mathtt{ATAA}\textbf{\textit{CGCAGG}}$	AAAGAACATG	TGAGCAAAAG
821	GCCAG	_		

Expected sequence of above DNA following bisulfite treatment.

Methylated pUC19 DNA: Below is the expected sequence for the Methylated pUC19 DNA after bisulfite conversion and PCR (sense strand). Methylated cytosines in the CpG dinucleotide context remain unconverted following bisulfite treatment, whereas non-methylated cytosines, or cytosines not in the CpG context, are converted to uracils and detected as thymines after PCR..

461	GGTTATA	GTTGTTTTTT	GTGTGAAATT	GTTATTCGTT
501	TATAATTTTA	$\texttt{TATAATATA}\underline{\textbf{C}}$	$\mathbf{G} \mathrm{AGT} \underline{\mathbf{C}} \mathbf{G} \mathrm{GAAG}$	TATAAAGTGT
541	AAAGTTTGGG	$GTGTTTAAT\overline{G}$	AGTGAGTTAA	TTTATATTAA
581	TTG C GTTG C G	$\mathtt{TTTATTGTT}\underline{\mathbf{C}}$	$\mathbf{G} \mathtt{TTTTTTAGT}$	$\underline{\mathbf{C}}\mathbf{G}\mathbf{G}\mathbf{G}\mathbf{A}\mathbf{A}\mathbf{T}\mathbf{T}\mathbf{T}$
621	$\mathrm{GT}\overline{\mathbf{C}}\overline{\mathbf{G}}\mathrm{TGTTAG}$	TTGTATTAAT	$\mathtt{GAAT}\underline{\mathbf{C}}\mathbf{G}\mathtt{GTTA}$	ACGCGCGGGG
661	AGAGG CG GTT	$TG\underline{\mathbf{C}}GTATTGG$	$\texttt{G}\underline{\textbf{C}}\underline{\textbf{G}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{C}}$	GTTTTTTCGT
701	TTATTGATT C	$\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{C}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{G}$	GT CG TT CG GT	TG CG G CG AG C
741	G GTATTAGTT	TATTTAAAGG	CGGTAATACG	GTTATTTATA
781	GAATTAGGGG	$\mathtt{ATAA}\underline{\mathbf{C}}\underline{\mathbf{G}}\mathtt{TAGG}$	AAAGAATATG	TGAGTAAAAG
821	GTTAG			

Non-methylated pUC19 DNA: Below is the expected sequence for the Non-methylated pUC19 DNA after bisulfite conversion and PCR (sense strand). During treatment with sodium bisulfite, non-methylated cytosines are converted into uracils, which are later detected as thymines after PCR.

461	GGTTATA	GTTGTTTTTT	GTGTGAAATT	GTTATT T GTT
501	TATAATTTTA	$\texttt{TATAATATA}\underline{\textbf{T}}$	$\mathbf{G} \texttt{AGT} \underline{\mathbf{T}} \mathbf{G} \texttt{GAAG}$	TATAAAGTGT
541	AAAGTTTGGG	GTGTTTAATG	AGTGAGTTAA	TTTATATTAA
581	$\mathrm{TTG}\underline{\mathbf{T}}\underline{\mathbf{G}}\mathrm{TTG}\underline{\mathbf{T}}\underline{\mathbf{G}}$	$\mathtt{TTTATTGTT}\underline{\mathbf{T}}$	GTTTTTTAGT	$\underline{\mathbf{T}}\mathbf{G}$ GGAAATTT
621	$GT\overline{\mathbf{T}G}TGTTAG$	TTGTATTAAT	$\mathtt{GAAT}\underline{\mathbf{T}}\mathbf{G}\mathtt{GTTA}$	A TGTGTG GGG
661	AGAGG TG GTT	$TG\underline{\mathbf{T}}\mathbf{G}TATTGG$	G TG TTTTT T	GTTTTTT T GT
701	TTATTGATT T	$\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{\underline{T}}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{\underline{T}}\mathbf{G}$	$\mathrm{GT}\underline{\mathbf{T}}\mathrm{G}\mathrm{TT}\underline{\mathbf{T}}\mathrm{G}\mathrm{GT}$	TG TG G TG AG T
741	G GTATTAGTT	TATTTAAAGG	TG GTAATA TG	GTTATTTATA
781	GAATTAGGGG	$\mathtt{ATAA}\underline{\mathbf{T}}\mathbf{G}TAGG$	AAAGAATATG	TGAGTAAAAG
821	GTTAG	_		

Also Available:

Product Name	Size	Cat. No.	
BISULFITE TREATMENT OF DNA			
EZ DNA Methylation™ Kit	50 rxns.	D5001	
	200 rxns.	D5002	
	2 x 96 rxns.	D5003	
	2 x 96 rxns.	D5004	
EZ DNA Methylation-Gold™ Kit	50 rxns.	D5005	
	200 rxns.	D5006	
	2 x 96 rxns.	D5007	
	2 x 96 rxns.	D5008	
	50 rxns.	D5020	
EZ DNA Mashulation DisastM Kit	200 rxns.	D5021	
EZ DNA Methylation-Direct™ Kit	2 x 96 rxns.	D5022	
	2 x 96 rxns.	D5023	

EZ DNA Methylation-Startup™ Kit	50 rxns.	D5024			
	50 preps.	D5025			
EZ Bisulfite DNA Clean-up Kit TM	200 preps.	D5026			
LZ Bisulike DNA Clean-up Kik	2 x 96 preps.	D5027			
	2 x 96 preps.	D5028			
METHYLATED/NON-METHYLATED DN/	STANDARDS				
Universal Methylated DNA Standard	1 set	D5010			
Universal Methylated Human DNA Standard	1 set	D5011			
Universal Methylated Mouse DNA Standard	1 set	D5012			
Human Methylated and Non-methylated DNA Set	1 set	D5014			
Human HCT116 DKO Non-methylated DNA Standard	5 µg	D5014-1			
Human HCT116 DKO Methylated DNA Standard	5 μg	D5014-2			
Bisulfite Converted Universal Methylated Human DNA Standard	1 set	D5015			
E. coli Non-methylated Genomic DNA	5 μg	D5016			
AMPLIFICATION OF BISULFITE CONV	/ERTED DNA				
Zymo <i>Taq</i> ™ DNA Polymerase	50 rxns.	E2001			
	200 rxns.	E2002			
Zymo <i>Taq</i> ™ PreMix (2X concentrated)	50 rxns. 200 rxns.	E2003 E2004			
QUANTITATIVE DETECTION OF METH	•	22001			
	100 rxns.	E2005			
EZ qPCR/HRM MasterMix	400 rxns.	E2006			
EZ DNA Methylation-Direct™ qPCR/HRM Kit	100 rxns.	D5300			
ANTIBODIES & IMMUNOPRECIPITATION					
Methylated-DNA IP Kit	Methylated-DNA IP Kit 10 preps. D5101				
ChIP DNA Clean & Concentrator™	50 preps. 50 preps.	D5201 D5205			
Anti-5-Methylcytosine Monoclonal	50 µg	A3001-50			
Antibody (clone 10G4)	200 µg	A3001-200			
METHYLTRANSFERASES	3				
CpG Methylase (M.SssI)	200 U	E2010			
ope wearyase (w.essi)	400 U	E2011			
GpC Methylase (M.CviPI)	200 U	E2014			
· · · · ·	1000 U	E2015			
DNA FRAGMENTATION					
DNA Degradase™	500 U 2000 U	E2016 E2017			
DNA Dogradoso BlueTM	250 U	E2020			
DNA Degradase Plus™	1000 U	E2021			
	50 U	E2018-50			
	200 U	E2018-200			
DNA Shearase™		_			
DNA Shearase™	50 U & DCC™	E2019-50			
	50 U & DCC™ 200 U & DCC™	E2019-50 E2019-200			
NUCLEOSOME MAPPING	50 U & DCC™ 200 U & DCC™	E2019-200			
NUCLEOSOME MAPPING EZ Nucleosomal DNA Prep Kit	50 U & DCC TM 200 U & DCC TM 3 20 preps				
NUCLEOSOME MAPPING EZ Nucleosomal DNA Prep Kit 5-HYDROXYMETHYLCYTOS	50 U & DCCTM 200 U & DCCTM 30 preps	D5220			
NUCLEOSOME MAPPING EZ Nucleosomal DNA Prep Kit	50 U & DCC TM 200 U & DCC TM 3 20 preps	E2019-200			

Trademarks and Disclaimers:

This product is for research use only and should only be used by trained professionals. Wear protective gloves and eye protection. It is not intended for use in diagnostic procedures. Follow the safety guidelines and rules enacted by your research institution or facility.

The Polymerase Chain Reaction (PCR) process is covered by U.S. Patent: #4,683,195; 4,683,202 assigned to Hoffmann-La Roche. Patents pending in other countries. No license under these patents to use the PCR process is conveyed expressly or by implication to the purchaser by the purchase of Zymo Research's products. Further information on purchasing licenses to practice the PCR process can be obtained from the director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404 or at Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501.

Version 1.0.2

[™] Trademarks of Zymo Research Corporation.