VELOCITY DNA Polymerase		Storage and stability: The VELOCITY is shipped on dry/blue ice. On arrival store at -20°C for optimum stability. Repeated freeze/thaw cycles should be avoided.
Shipping: On Dry/Blue Ice Batch No.: See vial	Catalog numbers BIO-21098: 250 Units	Expiry: When stored under the recommended conditions and handled correctly, full activity of the kit is retained until the expiry date on the outer box label.
Concentration: 2u/µl	BIO-21099 : 500 Units	Safety precautions: Please refer to the material safety data sheet for further information.
		Unit definition: One unit is defined as the amount of enzyme that incorporates 10nmoles of dNTPs into acid-insoluble form in 30 minutes at 72°C.
A Meridian Life Science® Cor	Store at -20°C	Quality control specifications: Bioline operates under ISO 9001 Management System. VELOCITY and its components are extensively tested for activity, processivity, efficiency, sensitivity, absence of nuclease contamination and absence of nucleic acid contamination prior to release. Notes: Research use only.

Description

VELOCITY is a fast, proofreading DNA polymerase from archaeal origin which generates blunt-ended amplicons. Its high thermostability combined with its 5'-3' DNA polymerase and 3'-5' proofreading exonuclease activities makes VELOCITY an ideal enzyme for all PCR applications. Indeed, VELOCITY possesses an error-rate of 4.4 x 10⁻⁷, providing a 50-fold higher fidelity than *Thermus aquaticus* DNA polymerase (determined using an adapted rpsL fidelity assay, Mo J.Y. *et al., J. Mol. Biol.* 1991; Fujii. S. *et al., J. Mol. Biol.* 1999). In addition, owing to its enhanced processivity, VELOCITY exhibits not only high amplification rates up to 66 bp/s (equivalent to 15s/kb), but also results in higher yields than most commercially available enzymes.

Components

Product Name	250 Units	500 Units
VELOCITY DNA Polymerase	125µl	250µl
5x Hi-Fi Buffer (contains 10mM Mg ²⁺)	2 x 1.5ml	4 x 1.5ml
50mM MgCl ₂ Solution	1 x 1.2ml	1 x 1.2ml
DMSO	1 x 1.25ml	1 x 1.25ml

General Considerations and Optimization

The optimal conditions will vary from reaction to reaction and are dependent on the system used. Each parameter has to be adjusted individually and some optimization may be required.

dNTP:

For optimal results we recommend using Bioline ultra pure dNTPs in a balanced mix. We recommend a final concentration of $250\mu M$ each. Do not use dUTP or dITP

Mg²⁺:

The optimal Mg^{2+} concentration depends on the dNTP concentration used. Since a 1:2 ratio (dNTP:Mg²⁺) is usually optimal, we recommend a final Mg^{2+} concentration of 2mM, but some optimization may be necessary, especially if using dNTP concentration higher than the recommended one. Indeed, a non-optimal concentration of Mg^{2+} leads to inefficient dNTP incorporation by the DNA polymerase. Since Mg^{2+} is also able to bind to DNA, an excess of Mg^{2+} in the reaction will promote secondary structure elements and increase non-specific primer binding leading to non-specific products. Alternatively, too low a concentration will decrease the reaction yield.

Please note that the reaction buffer already provides 2mM Mg²⁺ (final concentration).

Enzyme:

We recommend a range of 0.25–2.0 Units of VELOCITY in a 50 μ reaction. We suggest to start with the lowest concentration and not to exceed 2u/50 μ l.

Buffers and DMSO:

The default buffer is 5x Hi-Fi Buffer and has been designed to give high yield and fidelity for the majority of standard templates, however we would recommend the addition of 3% DMSO (final concentration) for optimal performance.

For difficult templates such as genomic DNA or those possessing high-GC -content or complex structural organisation, a higher concentration of DMSO could be advantageous. We would recommend doing a titration up to 10% DMSO, however in this case the annealing temperature should be reduced since DMSO decreases the melting point of primers by up to 5°C.

Primers:

Forward and reverse primers are generally used at the final concentration of 0.2- 0.6μ M each. We recommend as a starting point, to use 0.4μ M final concentration (*i.e.* 20pmol of each primer per 50µl reaction volume). Too high primer concentration can reduce the specificity of the priming, resulting in non-specific products.

Template:

The amount of template in the reaction depends mainly on the type of DNA used. For templates with low secondary structural complexity such as plasmid DNA or λ Genomic DNA, we recommend using 50pg-10ng DNA per 50µl reaction volume. For templates >5kb and genomic DNA we recommend a starting amount of 200ng DNA per 50µl reaction, this can be varied between 5ng-500ng. Furthermore, it is important to avoid, where possible, using template re-suspended in EDTA-containing solution (*e.g.* TE buffer) since EDTA chelates free Mg²⁺.

Initial denaturation: This step is important to completely denature the template in order to allow primers to bind specifically to the single-stranded DNA. We recommend performing the initial denaturation at 98°C for 2 min. Although these conditions will be enough for most of the templates, it is possible to increase the initial denaturation time to up to 5 min for very complex templates such as chromatin.

Annealing temperature:

The annealing temperature depends upon the primers' sequences and is usually $2-5^{\circ}$ C below the lower Tm of the pair. We recommend starting with a 55°C annealing temperature and if necessary to run a temperature gradient to determine the optimal annealing temperature.

Extension temperature and time:

The extension step should be performed at 72°C. The extension time depends on the length and type of the product to be amplified. Owing to the high processivity of VELOCITY, an extension time of 15s/kb can be used for low-complexity templates such as lambda genomic DNA or plasmid DNA. For templates with complex secondary structure such as human genomic DNA, we recommend using 30s/kb.

Since the length of the amplicon is also an important parameter, we also recommend using 15s/kb for amplicons <5kb. For longer amplification, increase up to 1 min/kb the extension time.

Standard Protocol

The following protocol given here is for a standard 50μ l reaction and can be used as a starting point for reaction optimization. The following reagents, once thawed, are kept on ice and mixed as described in a nuclease-free microcentrifuge tube.

PCR reaction setup:

5x Hi-Fi Reaction Buffer	10µI
100mM dNTP Mix	0.5µl
Template	as required
Primers 20µM each	1µI
Enzyme	1µl
DMSO (if required)	(1.5 µl)
Water (ddH ₂ O)	up to 50µl

Owing to VELOCITY DNA polymerase's inherent 3'-5' exonuclease activity, the enzyme must be added last to a reaction in order to prevent primer degradation.

Standard cycling conditions:

Step	Temp.	Time	Repeat
Initial denaturation	98°C	2 min	1
Denaturation	98°C	30 s	
Annealing	50-68°C	30 s	25-35
Extension	72°C	15-30s /kb	
Final extension (optional)	72°C	4-10 min	1

Troubleshooting guide

Problem	Possible Cause	Recommendation	
	Missing component	- Check mix set-up and volumes used	
	Defective component	- Check the aspect and the concentrations of all components as well as the storage conditions. If necessary test each component individually in control reactions	
	Enzyme concentration too low	-Increase enzyme quantity to up to 2U/50µl reaction	
	Cycling conditions not optimal	- Decrease the annealing temperature	
No PCR product		- Run a temperature gradient to determine the optimal annealing temperature	
		- Increase the extension time, especially if amplifying long target	
		- Increase the number of cycles	
	Not enough Mg ²⁺	- Increase the MgCl ₂ concentration in 0.5mM increments	
	Difficult template	- Increase the denaturation time	
		- Add DMSO. We recommend starting with 3% final concentration and if necessary increasing it up to 10%	
	Excessive cycling	- Decrease the number of cycles	
Smearing or Non Specific products	Extension time too long	- Decrease the extension time	
	Annealing temperature too low	 Increase the annealing temperature Titrate DMSO from 3% to 10% (final concentration) 	
	Too much enzyme	- Decrease enzyme concentration	
	Primer concentration too high	- Decrease primer concentration	
	Contamination	 Replace each components in order to find the possible source of contamination Set-up the PCR reaction and analyze the PCR product in separated areas. 	

Bioline Ltd UNITED KINGDOM

Bioline USA Inc. USA

Tel: +1 508 880 8990

Fax: +1 508 880 8993

Bioline GmbH GERMANY

Tel: +49(0)33 7168 1229 Fax: +49 (0)33 7168 1244 Bioline (Aust) Pty. Ltd AUSTRALIA

Tel: +61 (0)2 9209 4180 Fax: +61 (0)2 9209 4763

Tel: +44 (0)20 8830 5300 Fax: +44 (0)20 8452 2822

Website: www.bioline.com/ email: info@bioline.com