My	Taq™	HS Mix	Storage and stability: MyTaq HS Mix is shipped on dry/blue ice. On arrival store at -20°C for optimum stability. Repeated freeze/thaw cycles should be avoided.
11 0 9	Catalog num		Expiry: When stored under the recommended conditions and handled correctly, full activity of the kit is retained until the expiry date on the outer box label.
Batch No.: See vial		200 x 50μl reactions: 4 x 1.25ml 1000 x 50μl reactions: 20 x 1.25ml	Safety precautions: Please refer to the material safety data sheet for further information.
Concentration: 2x	ompany	Store at –20°C	Quality control specifications: Bioline operates under ISO 9001 Management System. MyTaq HS Mix and its components are extensively tested for activity, processivity, efficiency, heat activation, sensitivity, absence of nuclease contamination and absence of nucleic acid contamination prior to release. Notes: Research use only.

Description

MyTaq[™] HS Mix is a ready-to-use 2x mix for fast, highly-specific, hot-start PCR. MyTaq HS Mix is powered by antibody mediated hot-start and does not possess polymerase activity during the reaction set-up, thus reducing non-specific amplification. The advanced formulation of MyTaq HS Mix allows fast cycling conditions to be used, greatly reducing the reaction time without compromising PCR specificity and yield. Thanks to its speed and high specificity MyTaq HS Mix is also highly suitable for end point multiplex PCR. MyTaq HS Mix contains all the reagents (including stabilizers) necessary for trouble-free PCR set up. The product is supplied conveniently all in one tube to reduce the number of pipetting steps and to facilitate increased efficiency, throughput and reproducibility.

Components

	200 Reactions	1000 Reactions
MyTaq HS Mix, 2x	4 x 1.25ml	20 x 1.25ml

Standard MyTaq HS Mix Protocol

The following protocol is for a standard 50μ l reaction and can be used as a starting point for reaction optimization. Please refer to the Important Considerations and PCR Optimization section.

PCR set-up:

Template	200ng
Primers (20μM each)	1μl
MyTaq HS Mix, 2x	25µl
Water (dH ₂ O)	up to 50µl

PCR cycling conditions:

Step	Temperature	Time	Cycles
Initial denaturation	95°C	1min	1
Denaturation	95°C	15s	
Annealing*	User determined	15s	25-35
Extension*	72°C	10s	

* These parameters may require optimization, please refer to the Important Considerations and PCR Optimization section if needed.

Colony PCR Protocol

MyTaq HS Mix can be used for amplification of plasmid DNA directly from liquid cultures or from colonies on agar plates:

- From liquid culture: up to 8µl of the overnight culture can be directly added to the final reaction mix.
- From colonies: we recommend using a sterile tip to stab the colony and resuspend it directly in the 50µl reaction mix.

Recommended cycling conditions for colony PCR of fragment up to 1kb

Step	Temperature	Time	Cycles
Initial denaturation	95°C	1min	1
Denaturation	95°C	15s	
Annealing*	User determined	15s	25-35
Extension*	72°C	10s	

* These parameters may require optimization, please refer to the Important Considerations and PCR Optimization section if needed.

Multiplex PCR Protocol

MyTaq HS Mix is suitable for multiplex PCR; adjustment of the cycling conditions may be required. As a starting point we recommend using the following conditions:

Recommended standard cycling conditions for multiplex PCR

Step	Temperature	Time	Cycles
Initial denaturation	95°C	2min	1
Denaturation	95°C	30s	
Annealing/Extension*	User determined	4min*	25*

* These parameters may require optimization, please refer to the Important Considerations and PCR Optimization section if needed.

Important Considerations and PCR Optimization

The optimal conditions may vary from reaction to reaction and are dependent on the template/primers used.

Primers: Forward and reverse primers are generally used at the final concentration of $0.2-0.6\mu$ M each. As a starting point, we recommend using a 0.4μ M final concentration (*i.e.* 20pmol of each primer per 50 μ l reaction volume). Too high a primer concentration can reduce the specificity of priming, resulting in non-specific products.

When designing primers we recommend using primer-design software such as Primer3 (http://frodo.wi.mit.edu/primer3) or visual OMPTM (http://dnasoftware.com) with monovalent and divalent cation concentrations of 10mM and 3mM respectively. Primers should have a melting temperature (Tm) of approximately 60° C.

Template: The amount of template in the reaction depends mainly on the type of DNA used. For templates with low structural complexity, such as plasmid DNA, we recommend using 50pg-10ng DNA per 50 μ l reaction volume. For eukaryotic genomic DNA, we recommend a starting amount of 200ng DNA per 50 μ l reaction, this can be varied between 5ng-500ng. It is important to avoid using template resuspended in EDTA-containing solutions (*e.g.* TE buffer) since EDTA chelates free Mg²⁺.

Initial denaturation: The initial denaturation step is required to activate the enzyme and fully melt the template. We recommend 1 minute of initial denaturation at 95°C, however for more complex templates such as eukaryotic genomic DNA, longer initial denaturation times of up to 3 minutes may be required.

Denaturation: Our protocol recommends a 15s cycling denaturation step at 95° C, which is also suited to GC-rich templates (>55%). For low GC content amplicons (40-45%), the denaturation step can be decreased to 5s.

Annealing temperature and time: The optimal annealing temperature is dependent upon the primer sequences and is usually 2-5°C below the lower Tm of the pair. We recommend starting with a 55°C annealing temperature and, if necessary, running a temperature gradient to determine the optimal annealing temperature. Depending on the reaction the annealing time can also be reduced to 5s. **Extension temperature and time:** The extension step should be performed at 72°C. The extension time depends on the length of the amplicon and the complexity of the template. An extension time of 10s is sufficient for amplicons under 1kb or up to 5kb for low complexity template such as plasmid DNA. For amplification of fragments over 1kb from high complexity template, such as eukaryotic genomic DNA, longer extension times are recommended. In order to find the fastest optimal condition, we suggest increasing the extension time up to 30s/kb.

Multiplexing: When doing multiplex PCR the recommended 2-step cycling protocol may be optimized as follows:

- Annealing/extension temperature: we highly recommend initially using a temperature gradient to determine the optimal annealing temperature needed for the primer set used.
- Annealing/extension time: in most cases a 4min annealing/extension step is largely sufficient. However in order to reduce the overall cycling time this step can be reduced down to 1min, especially in the case of a lower number of multiplex amplicons.
- Cycling number: we recommend starting with 25 cycles and if necessary, optimizing this parameter. An excess of cycles may generate diffuse bands, too few may result in weak or no amplification.

Problem	Possible Cause	Recommendation
	Missing component	- Check reaction set-up and volumes used
No PCR	Defective component	 Check the aspect and the concentrations of all components as well as the storage condi- tions. If necessary test each component individually in controlled reactions
product	Cycling conditions not optimal	 Decrease the annealing temperature Run a temperature gradient to determine the optimal annealing temperature Increase the extension time, especially if amplifying a long target Increase the number of cycles
	Difficult template	- Increase the denaturation time
	Excessive cycling	- Decrease the number of cycles
Smearing	Extension time too long	- Decrease the extension time
or	Annealing temperature too low	- Increase the annealing temperature
Non-Specific products	Primer concentration too high	- Decrease primer concentration
	Contamination	 Replace each component in order to find the possible source of contamination Set up the PCR and analyze the PCR product in separate areas.

Troubleshooting Guide

Technical Support

If the troubleshooting guide does not solve the difficulty you are experiencing, please contact your local distributor or our Technical Support with details of reaction set-up, cycling conditions and relevant information.

Email: tech@bioline.com

TRADEMARK AND LICENSING INFORMATION

1). Notice to Purchaser: Licensed under U.S. patent numbers 5,338,671 and 5,587,287 and corresponding patents in other countries

2). HyperLadder and MyTaq are trademarks of Bioline Reagents Ltd

Bioline USA Inc. USA Tel: +1 508 880 8990 Fax: +1 508 880 8993 Bioline GmbH GERMANY Tel: +49 (0)337 168 1229 Fax: +49 (0)3371 68 1244 Bioline (Aust) Pty. Ltd AUSTRALIA Tel: +61 (0)2 9209 4180 Fax: +61 (0)2 9209 4763 Bioline France FRANCE

Associated Products

Product Name

Agarose tablets

SureClean Plus

HyperLadder™ 1kb

Agarose

Tel: +33 (0)1 42 56 04 40 Fax: +33 (0)9 70 06 62 10

Pack Size

200 Lanes

1 x 5ml

500g

300g

Meridian Bioscience Asia Pte Ltd SINGAPORE

Cat No

BIO-41025

BIO-41027

BIO-33025

BIO-37047

Tel: +65 6774 7196 Fax: +65 6774 6441

Tel: +44 (0)20 8830 5300 Fax: +44 (0)20 8452 2822

2822 Fax: +1 5